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toms also showed less favorable comparison between measured and
simulated data at the higher frequencies. It has been speculated that
this could be due to higher cross-talk among the quadrants [10] or
a change in the current pattern on the dipoles [11] at the high fre-
quencies. Nonetheless, the measured data still follows the general
pattern of the FDTD data.

V. Discussion

We have presented comparisons between measured data from an
inhomogeneous phantom and those predicted by an FDTD program
used in treatment planning for deep regional hyperthermia. These
were limited to the case of equal amplitudes and phases at three
frequencies. A more extensive range of comparisons for different
configurations of amplitude and phase would be desirable, but the
number of measurements is hindered by time-consuming logistical
problems. The Utah phantom itself requires almost two days to
construct and suffers from a short “‘shelf life’” due to the materials
used and boundary diffusion. However, this phantom represents a
substantial improvement over conventional homogeneous phan-
toms in testing the ability of simulation methods to account for the
inhomogeneities of the human body. In particular, it is hoped that
the results presented here will promote confidence in the treatment
planning program using the FDTD method.
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Alternative Field Representations and Integral
Equations for Modeling Inhomogeneous
Dielectrics

John L. Volakis

Abstract—New volume and volume-surface integral equations are
presented for modeling inhomogeneous dielectric regions. In particu-
lar, it is shown that materials with nen-trivial permeability and per-
mittivity can be modeled using a single unknown equivalent current or
field compenent. The presented integral equations result in more effi-
cient numerical implementations and should therefore be useful in a
variety of electromagnetic applications.

I. INTRODUCTION

The modeling of inhomogeneous dielectrics via an integral equa-
tion approach is traditionally accomplished via the introduction of
equivalent volume electric and magnetic currents [1]-[8]. For a
dielectric with non-trivial permittivity and permeability this type
of modeling implies six scalar unknowns at each volume location.
As a result, the implementation of the resulting integral equation
is computationally intensive and has excessive storage require-
ments.

In this paper it is demonstrated that any inhomogeneous dielec-
tric material, regardless of its permittivity and permeability profile,
can be modeled by a single electric or magnetic current density.
Alternativelv, either the electric or magnetic fields within the die-
lectric can be used as the unknown quantities. It appears though
that one must pay a price for resorting to these reduced-unknown
and/or kernal-singularity representations. Specifically, because they
involve derivatives of the unknown quantities, a higher (at least
linear) basis function is required for discretizing the resulting in-
tegral equations. However, it is possible to relax this requirement
by resorting to a new volume-surface field representation. In this
case, the undifferentiated electric or magnetic field within the di-
electric is the unknown quantity along with the corresponding tan-
gential electric or magnetic fields on the outer boundary. Provided
the dielectric volume is not composed of a single thin layer, this
volume-surface integral equation still represents a nearly fifty per-
cent reduction in the number of unknowns relative to traditional
implementations.

II. VOLUME REPRESENTATIONS

Let us consider the dielectric/ferrite volume V,, shown in Fig.
1, having relative constitutive parameters ¢, and u, which are ar-
bitrary functions of position. Assuming some exterior excitation,
(E', H'), the total field can be written as

E=E+E H=H +H' (1
where (E°, H*) are the scattered fields caused by the presence of
the dielectric. Traditionally [1] the scattered fields are formulated
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Fig. 1. Illustration of the inhomogeneous dielectric volume V, enclosed
by the surface S,.

in terms of the equivalent currents
Jeq :jkaYo(Er - I)Ea Al\eq =jkoZo(l’4r - I)H (2)

with k, and Z, = 1/Y, being the free space wavenumber and in-
trinsic impedance, respectively. In terms of these effective or
equivalent current densities, the scattered field is given by

ES - XSSV [V x f‘)(r’ r,) ) Mﬂl(r’) +jk()Zuf(1(rg r')
(]

“Jog ') dv’ ©))

in which r and r’ denote the observation and integration points,
respectively,

= - VV
r,(r.,r')= ~{I + 7} G,(r,r'), 4)
is the free space dyadic Green’s function,
V X Lo(r, r') = =VG,(r,r') x 1, Q)
e—jk.,lr—r’l

G, =

orr’) dxlr —r'|
T=it+Ww+% ©)

is the unit dyad and H’ is given by the dual of (3). By substituting
(3) and its dual into (1) and then into (2), we obtain the coupled
set of integral equations:

— v, 7
jkoYa(er - 1) re v ( 2

M., (r)
jkozo (l/'r - l)

for a solution of the equivalent currents J,, and M,,.

The aforementioned formulation appears to be the only approach
that has so far been utilized for three dimensional implementations.
However, as noted in the literature [4], [5], [9], the singularity of
the kernal in (3) presents numerical difficulties. Also, for non-triv-
ial permeability, six scalar unknowns are involved in the solution
of (7). One way to alleviate the first of these difficulties is by re-
sorting to higher order basis functions and expressing, for example,
E* as '

H =H reV, (7b)

ES - SSS {MEq X VGO(r’ r’) - jk/)Z()Jqu()(r’ r’)

Va

g,

k, * g (rYVG,(r, r’)z dv’. (8)

In this, V' implies differentiation with respect to the primed/inte-
gration coordinates and we remark that such an expression and its
dual can be considered as the volume equivalent to the Stratton-
Chu surface integral equations.

Although the above approach appears to be the most popular in
modeling three-dimensional dielectrics, it can be shown that there
are several other ways to formulate the problem. Most importantly,
it can also be shown that (7) can be replaced with an equivalent
system which involves only three (not six) scalar unknowns. Spe-
cifically, from Maxwell’s equations [10] the radiation of M,, is
indistinguishable from the radiation of the electric current:

V X M,

Y=z ©)

This can be combined with (2) giving a single equivalent electric
current

'Iéltl =jkoYa(6r - I)E +V [(H - I)H]

=(6—’:ﬁv><H+v><[(#,—1)H]

€,

(10)

for representing the scattered fields (E*, H*). From the dual of (3)
we then obtain that the scattered magnetic field due to the current
density (10) is

H = HS [VG,(r, r') X I - {ﬂ'ﬁi—lv' x H(r')
Va Er(r’)
F VX () — l)H(r’)]} dv’. (n

When this is used in (1) we deduce the integral equation

H'@) = H@ — SHW[VGO(r, r) x I

: {——*—E’(r’) — Ly x He
& (r)

+ V"X [(p(r') — I)H(r'A)]} dv' reV, (12

where the unknown quantity is now the magnetic field within V.
Using a similar procedure it can be also shown that the scattered
field may instead be represented by the radiation of a single mag-
netic current density:

_ (l"'r -1
“r

M;, = VXE~—-V X[ — 1DE] (13)

From the first of (1) and (3), we then deduce the integral equation
E'(r) = E(r) ”SV [VG,(r.r") X I
d

: {——“’("),— Lo Be
Be(r')

+ V' X [, (r') - I)E(r')]} dv’ (14)
which as expected is the dual of (12). We observe that the kernel
singularity associated with (12) and (14) is the same as that asso-
ciated with (8). In addition, as in the case of the integral equation
(7) in conjunction with (8), linear expansion functions such as those
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in [3] or [4] are required for the discretization of (12) and (14).
Thus, even though the new integral equations (12) and (14) have
half the unknowns, this was not achieved at the expense of increas-
ing the kernel’s singularity or the order of the expansion basis re-
quired in their implementation. It is remarked that special forms of
these integral equations have already been successfully imple-
mented for two dimensional applications [11], [12].

III. VOLUME-SURFACE REPRESENTATION

The requirement to employ linear basis in connection with the
implementation of (12) and (14) can be relaxed by resorting to a
volume-surface integral equation (VSIE) such as that derived in
[13] and [14] for two dimensional simulations. To do so we begin
with (3) which in conjunction with (2) can be rewritten as

E'=E +E, =~k SSSV le,r") — 11E(") - T,(r, r')

—jk,Z,V % SSSV Lp-Gr") — 1TH(r" )G, (r, r’) dv’
(15)

where E;, is associated with the second integral and represents the
field due to the magnetic equivalent current defined in (2). Setting
H =V X E/jk,Z,u, in this integral, and invoking the identities

VX[V' XE] =V X [V'¢ X E] +V X [¢V' X E)
Vigy) = ¢V + VY

we obtain
E;, = F, + F + F (16)
with
ri=vx ([ v {(1 - )Guv,r')E(r')Edv'
2] ur(r,)
17
Fl= -V x HS {(1 - )V'G,,(r,r’) X E(r’)}dv’
Va g (r')
(18)

s3
Fy,

1
o 11, for () < o

These integral expressions can be simplified through the use of var-
ious integral and differential identities.

The volume integral in (17) can be transformed to a surface in-
tegral by invoking Stoke’s identity:

SSS (V' x A dv' = @ A" X A)yds’
Va Sd

where S, is the surface enclosing V; and A2’ = 7A(r’) denotes the
outward unit normal to the surface S,;. We have

V X @ <1— 1,>G(,(r,r')[ri’ X E(r')] ds'
Su pr(r’)

- @ <1 — —1—,—> A’ X E(r')] X VG, (r, r') ds’
Su M’r(r)

@n

20)

i

51
F,

il

which is an integral involving the undifferentiated tangential elec-
tric field over the surface enclosing V,. Turning now to the integral
in (18) we first rewrite it as

1
F? = —“S {1— ,}VX[V’G,,(r,r’)XE(r’)]dv’
Yy p’r(r )
(22)
and we note that [15, p. 487]
V X [V'G, X E(r')] = E¢")V2G, — E(r') - VVG,. (23)
Then, upon invoking the differential equation
VIG(r, r') + kG, (r, 1) = =& — 1) (24)
where 6(r') denotes the Dirac delta function, it follows that
52 2 1 ' T 2 '
F,; = -k, 1 - —|E(r') - T, (r,r')dv
Va “r(r )
1
. {1 L }E(r’). 25)
pe(r')

Again, this involves only the undifferentiated electric field within
the dielectric’s volume. Finally, the last integral in (16) can be
readily simplified and written as

§{1, 7« [a e o] e a

Va M'r(r)

HS VG, (r, r') X [V’[ 1 - } X E(r’)} dv’. (26)
Va (')

When (21), (25), and (26) are substituted into (16) and then into
(15), we find that the total scattered field can be expressed as

$3
F,

i

s . _p2? o i N . T ' '
E = —k; ”gw {er(r ) u,(r’)] E@r') - Top(r,r'ydv
+ SSSV VG, (r,r') x {V’ [

1
- @s‘, {1 - ,u,(r')J [A' X E(r')] X VG, @, r')ds’

i
u,(r')] x Elr )} v

1
1 — —— | E@&»
+[ m(r'J ®

2N
For two dimensional simulations where the material parameters and
the fields are invarient with respect to z, this expression can be
readily shown to reduce to the VSIE given by Jin, etc. [13, equa-
tions 28 and 31). Expression (27) is also similar to the VSIE given
by Tai [16]. However, Tai’s expression was left in terms of differ-
entiated field quantities and is only applicable to homogeneous di-
electrics.

To obtain an integral equation on the basis of (27) we substitute
this into the first of (1) and upon taking the principal value of the
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Fig. 2. Different volume equivalent currents for modeling the scattering
by the inhomogeneous dielectric volume V, in Fig. 1.

appropriate integrals we have
1 —
I PR PN
° Vi— Vo 5,(" ) l"‘r(r,) E(r ) r()(r, r ) dv
1
+ Er') X v’ , ,
j‘S\S‘VdZ (r ) !:‘ur(rr):]} X VG()(r, r )d?}

1 . , ’ ,
B @Sy“&) [l - ,u,(r’)] ntx E(r )] x VG(,(I’, r )dv

E(r) rnot in V,
l 1
+ Ei - 2 1+ ’ur(r) E(r) ron Sd
1
3 le,() + 2p,(NIEX rinV, (28)

In this, V, is a vanishingly small spherical volume whereas S, is a
vanishingly small hemispherical surface both having their centers
at r. As given, (28) can be discretized vid the moment method or
some other technique for a solution of E(r) within the dielectric.
Its kernal has, of course, the same singularity as (7a) but involves
only a single unknown vector field in comparison with the two vec-
tor unknowns appearing in (7). If linear rather than pulse basis are
employed for the solution of (28), it may then be desirable to re-
write the first integral of (28) in the form given by (8) with M,, =
0 and

g, =t [er M, (D) = 1

Z w0 [ @)

However, in this case one could also resort to the alternative inte-
gral equations (12) or (14). Of course, the dual of (28) is another
integral equation. Further, linear combinations of (28) and its dual
or (12) and 714) can be utilized if so desired.

In closing, we remark that if u, and/or ¢, are discontinuous within
V,, the surface integral in (27) and its dual must then be replaced

by
X Cﬁ% i) = ul ()] A ') X Fr')] X VG,(r, r') ds’

where F = E or H. Here, S, denotes the ith boundary separating
the regions having different constitutive parameters, #;(r) is the unit
normal to S; pointing from the — side to the + side (outermost
side) and u’_ denotes the inverse relative dielectric constant at the
+ or — side of the surface §,. In particular u’ = 1/u! for the E-
field integral equation (27) and u' = 1/e! for the H-field integral
equation.

IV. CONCLUSION

Some alternative formulations were proposed for modeling three-
dimensional inhomogeneous dielectrics. These are summarized in
Fig. 2 and the aim of the investigation was to generate integral
equations for the fields within the dielectric scatterer utilizing the
minimum number of unknowns and the least singular kernels. A
purely volume integral equation was derived involving half the un-
knowns required with traditional equations for ferrite materials. The
implementation of this reduced-unknown volume equation implies
use of (at least) linear basis functions and to relax this requirement
a volume-surface integral equation was derived. All of the integral
equations presented here appear to be more efficient than the tra-
ditional ones without compromising the kernel’s singularity and
this has already been demonstrated in two-dimensional implemen-
tations. They should thus be found useful in a variety of radiation,
scattering or SAR applications.
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